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Finite elements with bi-cubic, B-spline basis functions are used to represent the flux 
functions of an axisymmetric, field-reversed plasma. Equilibria, in this representation, are 
obtained by the collocation method and a generalized ICCG algorithm. For the infinite, 
toroidal-mode number limit of the MHD energy principle, coupled Sturm-Liouville-like 
equations result on each flux line. A secant-bisection shooting method employing the gridless 
Gear integrator is used to find very accurate eigenfunctions, eigenvahres, and growth rates 
from the continuous-spline representation of the fields. Precise agreement with some exact 
analytic work is obtained. 

1. INTRODUCTION 

In recent years several field-reversed theta-pinch experiments have been found to be 
stable [l-3] when in fact the ideal MHD stability theory indicated they should be 
unstable. To understand the mechanisms which might stabilize these configurations, 
we have set out to first have a good quantitative understanding of the ideal MHD 
theory. The theoretical calculations are done in two parts-equilibrium and stability. 
Because we are concerned that inconsistent representations and truncation errors 
from difference formulas might produce erroneous results-particularly in the 
stabilityc calculations-we have made an effort to do both the equilibrium and 
stability calculations very accurately with a consistent, continuous representation 
employing finite elements. 

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore 
National Laboratory under Contract W-7405-ENG-48 and by the Los Alamos National Laboratory 
under Contract W-7405.ENG-36. 
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The problem we address here, first studied by Bernstein et aE. 141, uses the energy 
principle to derive equations appropriate to the infinite, toroidal-mode number limit 
of axisymmetric, field-reversed equilibria having no toroidal fields. Applications to 
field-reversed mirrors and theta pinches are intended. Earlier calculations, employing 
finite difference methods, on Astron equilibrium and stability were performed by 
codes which were the forerunners of the algorithms described here [S]. Related 
analyses for multipoles has been given by D’lppolito et a2. [6 J. The modes we 
investigate, commonly referred to as ballooning modes, differ somewhat from those 
found in tokamaks [7] because we have no toroidal field and hence all field lines are 
closed. 

Several other approaches to the MHD-stability studies have been pursued and the 
equilibria we generate are made available to and have been used in other stability 
calculations. The equilibria code, CYLEQ, to be described below, produces disk files 
of its results which form the input to several stability codes: 

1. MALICE (Magnetic Almost Lagrangian Implicit Continuous Eulerian) is a 
3-D MHD, time-dependent, nonlinear code for simulating the plasma motion [S]. 
Taking the CYLEQ-generated equilibria as initial conditions, we have used 
to study the long-wavelength, MHD-stability properties of both stationary an 
rotating equilibria [9]. 

2. MHD-2D is a fully nonlinear, 2-D, r, z-resistive, MHD code used primarily 
to study resistive tearing modes and the associated transport of axis~mmet~ic 
equilibria [IO]~ In one mode the CYLEQ equilibria are used to initiative these 
simulations. 

3. RIPPLE VI [ 111 and ALIMO [ 121 calculate the 2- , nonlinear, MHD, r, z 
flow given a pure Fourier mode for the azimuthal dependence. CYLEQ~ge~~rated 
equilibria for the FRX-B experiment have been shown by the RIPPLE VI code to 
have the tilting instability. 

ABGROW is the stability code to be described in this paper. It, too, uses 
results from the disk file to form its Fepres~~tatiQ~ of the equil~b~~~m. 

The equilibrium model and its numerical algorithms are described in Sections 2 
and 3. Then, in Sections 4 and 5, we give the stability model and the ~~me~ica~ 
methods used in its solution. Results, including a demonstration of the correctness of 
the methods, are presented in Section 6 and some conclusions are offered in $c~tio~ 7, 

Although the results generated by these models turn out to be pessimistic for ideal 
MHD ity, the models do provide a means of making quantitative studies of the 
ideal properties of various equilibria. Other mechanisms, such as the finite 
Larmor radius (FLR) effect, can then be expected to stabilize some of them. 
codes may give us a handle for determining the least ~~sta~i~ 
co~~gurations-perhaps those most amenable to stabilization by these other 
pbenome~a. 
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2. EQUILIBRIUM MODEL 

We obtain a simple model for the equilibrium fields by assuming a single-fluid, 
scalar-pressure plasma and neglecting electrostatic fields and any plasma motion. 
Further, we consider only axisymmetric configurations with no toroidal field and 
model them in the r, z plane. With these restrictions, pressure balance reduces to 

where v = rA, is the flux function. Throughout this article rationalized Gaussian 
units are employed. Of the Maxwell equations, only Ampere’s law remains. In terms 
of the flux function it is 

(2) 

We note this is a nonlinear equation in I+Y, sometimes referred to as the 
Grad-Shafranov equation. Pressure balance along flux lines requires P = P(y) alone. 
One choice for the pressure function we employ is 

m+HPI(I +cos{n[a+ytanh(ay/-tb)Jm}). (3) 

A special case, Hill’s vortex, is obtained for H = 0, ly, = 0, m = 1. The structure of 
the formula is intended to allow for hollowed-out current profiles and gives control 
over the width and position of the current distribution. This empirical formula for 
P(v) has been found to give good agreement with field-reversed theta-pinch 
experiments. Furthermore, it should be noted, ws > 0 allows fnite pressure on open 
field lines beyond the separatrix (a feature also seen in experiment), which improves 
the MHD stability to interchange modes. 

Equation (2) with appropriate boundary conditions is then solved for w  = ~(r, z). 
Since v arises both from plasma currents as well as currents in the confining coils we 
consider these contributions separately and write 

In our model the coils are assumed to be axisymmetric hoops at arbitrary r, z 
locations; a straightforward evaluation of complete elliptic integrals gives wCoi, 
everywhere on the domain. Within the computational domain, where only plasma 
currents are allowed, the equilibrium equation can be written 

(5) 
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The boundary conditions for vP, can be obtained self-consistently from the 
Biot-Savart law or, for example, in the case of a perfectly conducting boun 
wp, = 0.0 can be used. 

3. FINITE ELEMENT EQUILIBRIUM SOLVER 

We solve Eq. (5) on a 2-D, rectangular, r, z domain. The grid cells are rectangles 
and the spline formula for VP, is given as 

where U and W are cubic B-spline basis functions. Figure 1 shows the focalized, 
twice-differentiable form of them. We define U,(v) by 

U,(r) = & [(r - rk+ ,): - 4(r - Q,: -t 6(7. - L,,: 

where (r)+ = r for Y > 0 and (r)+ = 0 for r < 0. Among other properties we note 

for k = i + I, i, i - 1, other i, respectively, 

+o,+o for k = i $ 1, i, i - 1, other i, respectively, 

x fcm) 

FIG. 1. A set of cubic B-spline basis functions. 

581/42/2-6 
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and 

- &I,--2,1,0) 
a’u, 
ar2 ri Ar2 

for k = i + 1, i, i - 1, other i, respectively, 

(8) 

which are useful in deriving the discrete equations below. Analogous definitions apply 

to the (z) functions. Substitution of Eqs. (6) and (8) into Eq. (5) yields the discrete 
system of equations to be solved: 

Aij&‘T’_j-, , + Bijay$Jl+ C,ay,‘: j-1 + Dijarf: j+ E,arf’ 

+F,a~~:“l’j+Gija~~-+llj,,+Hijar~:,+Kija;,t,lj+, 

for i= 1, i,,,; j = 1, j,,, . Here 

ap n 
=-rj' aw j ( ) 

A,,=C,=&+ 
1 1 

-+----, 
z 6Ar2 12r Ar 

1 1 1 
C,=Kij=G +G- 

12rAr ’ 

1 
Dij=~ij=&---.- 

‘? 3Ar2 ’ 

-4 4 
Eij=z- 3A,.2 9 

1 B”=&+&+-, 
z 34, 3rAr 

1 2 1 
Hijz34: + 3--’ 3rAr 

(9) 

(10) 

These hold for a regularly spaced grid. The system in Eq. (9) has N= imaxjmax 
equations and is a nonsymmetric, banded-matrix equation with nine nonzero 
diagonals. Equations represented by rows in the matrix with less than nine nonzero 
entries correspond to boundary value operators and the corresponding entries in the 
right-hand-side vector are the boundary values [rather than the -r@P/a~); as 
implied in Eq. (9)]. Thus general boundary conditions are included naturally in the 
matrix form. More details about the implementation of these quite general boundary 
conditions are given in Ref. {18]. 

The flux function r,~ is now smoothly represented by the bi-cubic splines-twice 
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differentiable in each coordinate. This property allows other quantities such as 
VB to be defined analytically anywhere on the domain. 

The method given in Eq. (9) and used here is called collocation and gives second- 
order spatial accuracy. Use of the Galerkin procedure (which essentially modifies the 
right-hand side to be a local average of rz apI@) would give third-order spatial 
accuracy. Equation (9) is solved by the ILUCG algorithm [131----a generalization of 
the ICCG method [ 14, 151 which will not be discussed here. 

Since Eq. (9) is given with iteration levels n + 1 and n on the left and right sides, 
respectively, it is a linear matrix equation for the CI”’ ’ array. Every time a new a;’ ’ 
array is determined we update aP/Br,v to be a function of the I$S at the new iterative 
level. These nonlinear iterations-a Picard iteration sequence-continue until the Q* 
converge. 

We have discovered that quicker convergence may be obtained in practice by a 
procedure called mixed iterations [16]. Because ILUCG uses an iterative process 
itself to solve the linear problem in Eq. (9), it is possible to mix the linear and 
nonlinear iterations. So perhaps every few linear iterations are followed by a 
nonlinear update of the right side of Eq. (9). At the extreme we have tried the locked 
iterative method where the nonlinear update is done on every linear iteration but we 
have found the mixed iterations to work best. 

A comparison with an older method, AD1 (useful for solving eve-banded-matrix 
approximations to the equilibrium equations), shows ILUCG requires about the same 
computer time per iteration as ADI. But ILUCG tends to use less than half as many 
iterations to a given level of convergence and is consistent with our co~ti~~o~s 
representation. All difficulties associated with a splitting method like ADI are absent 
for ILUCG. For example, AD1 is known to converge to an oscillating pair of non- 
solutions for some cases-this does not happen with ILUCG. Further, A 
must provide a convergence parameter which determines the speed of convergence or 
causes numerical instability; no such parameter appears in ILUCG. 

We routinely use this algorithm, ILUCG, in the ~q~ilibri~rn code CYLE 
obtain solutions with very small relative error in Eq. (9) of the order of IQ-* or 
For a 25 X 49 grid roughly 250 iterations (linear and nonlinear) are required for this 
accuracy in a typical problem. This takes about 28 set on the C C 7fjOo computer, 

4. STABILITY MODEL FOR BALLOONING 

Among the possible stability models, we have chosen to study the ideal 
modes in the large toroidal-mode number limit. Equations resembling 
Sturm-Liouville equations are derived from the energy principle. The ~orrna~iz~d 
displacements X, Y, Z are defined 
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t, = B-Z (11) 

in terms of the physical displacements (length) &, c&,, &. In the well known work of 
Bernstein et al. [4], the equation 

I 
zds 
B (12) 

was obtained by using the mathematically convenient norm 

(13) 

Here A is the eigenvalue (positive for stability), D = 2k/rB is a curvature-dependent 
factor (where k is the curvature), U = s ds/B, H = 1 ds/B3, s is arc length along a 
field line, and y the usual thermodynamic ratio of specific heats. The norm chosen is 
not a physical constraint on the system and the eigenvalues cannot be related to 
growth rates. 

If we alternatively minimize 6W in the physically appropriate kinetic energy norm 
then two coupled equations result: 

and 

The kinetic energy norm is given by 

(14) 

Now co’p = A holds so growth rates io can be obtained when o2 < 0 (which is of 
course the condition for MHD instability). In the derivations of Eq. (14) from the 
energy principle, it is assumed that the perturbed motion of the MHD fluid is 
adiabatic. We have also derived equations similar in form to Eq. (14), in which the 
double adiabatic model was used in the perturbations, and other models for the 
perturbations could lead to equations of this form. The code we describe here should 
generalize to study these other stability models. For this report we shall restrict 
ourselves to the single adiabatic law assumed in Eq. (14). 
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Equation (14) can be written in the form 

l-2 = h(A); 

k = k(A). 

Since the Gear solver [ 17, 181 we shall use to integrate these equations requires 
first-order ordinary differential equations, we transform to such a system. We define 

and W=gZ+ cx. 

Then the first-order system is 

au az 
-c--hX, as- as 

ax u 
-z--) 
as f 

g = -kZ, 

and 

aZ w-cx 

as= g * U&a) 

To these we add the two equations governing the location of the flux line itself: 

ar B -=’ 
as B’ 

and 

All of the equilibria we consider are symmetric about z = 0. Hence it is only 
necessary to integrate in the z > 0 sub-domain. The eigenfunctions X wili be either 
even or odd functions in z. And Z will be either odd or even, respectively. Simiiarly, 
in the arc length coordinate s, X (and Z) will be even (odd) or odd (even). ~ef~n~n~ 
s, to be the arc length halfway around a flux line (back at the z = 0 midplane) we 
also require X (and Z) to be even (odd) or odd (even) there. This over-specification 
of boundary data is what makes the system given in Eq. (14) an eigenvalue problem. 

In the spirit of the Sturm-Liouville theory [ 191, we have tried to obtain bounds on 
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the eigenvalues-in our case on the four smallest (ii (two even and two odd). First, 
we explicitly display /1 in the factors h and k in Eq. (16) by 

and 

h = q(h* + A), 

k=BA. (19) 

Next, we define maxima and minima of all the coefficients such that 

These upper case coeffkients are all constants in s and can be used to define a set 
of associated eigenvalue problems-each one of the form 

+E(H*+A)X=C$, 

For this system the solutions are just X = cos(nzs/s,) and Z = E sin(nns/s,) for 
the X-even case. Analogously, the X-odd case has sin and cos solutions. The odd and 
even spectra are degenerate, so we need only study the X-even case. Substitutions of 
these solutions into Eq. (21) and the elimination of E lead to a quadratic equation for 
A. We get 

a2G 

A=-- ( 
H*-$- B*[H”2g- (dE)*+4ayT+~~~)]1~z) 

2 
(22) 

where a = nnjs,. 
For each mode-each choice for n-we establish bounding eigenvalues as follows. 

Every possible combination of the bounding constant coeffkients is used to generate 
a pair of /I’s from Eq. (22). There are 64 of these pairs. We postulate the maximum 
and minimum of these sets to be bounding eigenvalues. Though we have attempted no 
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proof that these are indeed bounds, our experience has confirmed our assurnpti~~~ 
Knowing these bounds gives one a place to start to find the eigenvalues of Eq. (1 

5. ALGORITHMS FOR STABILITY CALCULATION 

5.1. Code Setup and Overview 

The stability code, STABGROW, is given the fields w, P, and P’ on an r, z 
from a disk file produced by CYLEQ or HILLSV (analytic Hill’s vortex equilib 
The routines from the tensor-produced spline interpolation code, TPSIC [20]? are 
used to invert these arrays into the corresponding arrays of bi-cubic spline coef- 
ficients; these are checked to be precisely the same coefficients generated in CYLE 
to verify the consistency of the two codes. ‘The right and left sides of Eq. (2) are 
evaluated and compared; we print out the relative error of these at every grid point to 
assure ourselves of a proper equilibrium. These errors are typically lo-*. 

Next, for the chosen flux lines, the trajectories of these lines are obtained from the 
Gear integration applied to Eq. (18b). A grid is superimposed on this line and the 
grid spacings are constructed to be proportional to 

To determine the fastest growing modes we look for the lowest eigenvalues-these 
correspond to low poloidal mode numbers, i.e., ye = 0: 1,2. In doing this we first 
evaluate the extreme bounds given in the last section. 

Then, in three passes over a field line, the code S~ABGR~W does the f~iiowing: 

1. scans from the lower bound to upper bound using the finite di~e~~~c~ 
integrator until it finds the first few approximate eigenvalues for both even and odd 
cases; 

2. takes each approximate eigenvalue found above and applies secant-b~sect~~~ 
iterations using the finite difference integrator and obtains more accurate eigcnva~~~s~ 
and 

3. further refines these by using the Gear integrator with the secant-bisection 
iterations. 

5.2. Criterion Jar Eigenvalues 

The test for finding an eigenvalue depends on how well the trial solution fits the 
right-hand boundary conditions. We present the method used for X-even and Z-odd 
and note the other symmetry has an analogous method. At the left-hand boundary we 
have X’(O) = 0 and Z(0) = 0, but we cannot explicitly set both X(0) and Z’(O). 
of them, or a combination, can be set to determine the norm of the eige~f~n~i~ns~ 
We require 

X2(O) + .P(O) = 1 (2-J) 

at the left-hand boundary to give the norm. To obtain the X(0) and Z’(Q), we proceed 
as follows. Pick two pairs, X,(O), Z:(O) and X,,(O), Z;(O), both satisfyin 



298 ANDERSON AND BARNES 

X Odd, 2 Even: 

2@; x, *jiyB x 

x (0) = 0 
z’ (0) = 0 (31 Ats=s, (b) 

X Even, Z Odd: 

Ats =0 
Ats=s m 

X’(0) =o 
2 (0) = 0 (4 IdI 

FIG. 2. Graphical description of the linear calculation to determine the ratio of Z/X’ or i?/X at 
s = 0. In (a) and (c) the possible initial conditions (A or B) lie on a circle for X-odd and X-even, respec- 
tively. In (b) and (d) the mappings to the Z’, X and Z, X’ planes at s = s, are given, respectively. 

Use the integrator-finite difference or Gear-to obtain X~(s,), Z&s,) and X&s,), 
Z,(s,). Note in Fig. 2d we can represent these values in the Z, X’ plane. Because 
Z(s,) = 0, X’(s,) = 0 is the desired condition for an eigensolution, we can get closest 
to this condition by taking a linear combination of Xl,, Z, and XL, Z, (shown as 
X’ , Z in Fig. 2), which corresponds to minimizing the distance function d where d s 
j-e-7 XC + Z,. Owing to the linear properties of our equations XL, Z, lies on a straight 
line. That is, 

and 

Z&> = ~z,hJ + (1 - @ Z&m>. (24) 

Determining d and 0 is a straightforward analytic geometry calculation. From this we 
find 

X,(O) = f=a(o) + (1 - 0) X,(O), 

and 

z;(o) = ez;(o) + (1 - e) Zb(O). (25) 

This point lies on the chord shown in Fig. 2c. Because it no longer satisfies the 
norm given in Eq. (23) we scale X,(O) and Z:(O) larger until it does. Point c on the 
circle then gives a better guess to the left-hand-side boundary conditions. Iterations 
are performed to move points a and b closer to c until the chord is a good approx- 
imation to the circle. 
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The distance vector d depends on A; we monitor both the phase and magnitude of 
in our initial scan looking for eigenvalues. We increment upward until the phase of 

d changes -7~ rad; this Ai value is then stored to be used later as an initial guess for 
the shooting method. 

5.3. The Secant-Bisection Shooting Procedure 

We have built an algorithm for finding the root Ai of d(Ai) = 0 which enjoys the 
guaranteed convergence property of the bisection method and further has half the 
usual arithmetical operations per iteration required by Newton’s method. To start, the 
user supplies two values A, and A, (Ag > A,) which may or may not bracket the 
root. 

The algorithm is given by 

(a) W = 1.0 if ei(A,) . ~$4,) < 0, W = 2.0; otherwise 

(b) set A = AB - W&4,) d(2) I;@‘) ; 
B A 

(c) if d(A,) 1 d(A,) > 0 and A < A,, then set A, = A and d(A,) = d(A); 

(d) if d(A,) . d(A,) > 0 and A > A,, then set A, = A and d(A,) = d(A); 
(26) 

(e) if d(A,) . d(A,) < 0 and d(A) . d(A,) > 0, then set A, = A and d(A,) = d(A); 

(f) if d(A,) . d(A,) < 0 and d(A) . d(A,) < 0, then set AA = A and d(A,) = d(A). 

The procedure is then repeated starting again at step a. It is iterated until A, - A, 
is suitably small. Steps c and d are implemented only when the solution is not 
bracketed and using W = 2.0 has the effect of moving AA and A, farther apart until 
the solution is bracketed. Unlike the pure secant method, steps e and f always keep 
values Aa and A, such that they bracket the solution. After some initial iterations 
where c or d are invoked until bracketing occurs, the algorithm continues all of its 
remaining iterations with steps e or f. 

Stated in other words, steps e and f are the standard bisection algorithm logic, and 
step b generalizes the notion of picking the midpoint to that of using linear inter- 
polation to find a point between A, and A,. And steps c and d help the process get 
started. Since evaluating @Ii) for a given Ai requires iterating the left-hand bo~da~y 
condition in the manner described above, the secant-bisection iterations form an outer 
cycle or loop. 

5.4. Integrators 

We employ a fast finite difference integrator to solve Eq, (16) directly, or we use 
the more accurate but slower Gear solver to integrate the equivalent ~r~t-~~d~r 
system given in Eqs. (Isa) and (18b). The Gear algorithm is adequately de~~r~~ed 
elsewhere [ 17, 181; suffice it to note that it can be made accurate to round-off error if 
it is given analytic (exact) coefficients. 

To use the finite difference integrator, we first generate a gridded field line and 
define all of the coefficients on it. To get started, we use the Gear integrator on 
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parts of Eq. (18b), which then gives the trajectory of the field line. On this line we put 
grid points spaced proportional to B. At each grid point location, we use the 2-D 
spline formula and its derivatives to specify all of the coefficients in Eq. (16). The 
finite difference version of Eq. (16) we use is 

1 ..&+y*(xi+l -xi) J;:-1,2(xi-xi--l) 

6 i--1/2 [ 6i - 6i-l 1 + h,~, I I 
= ci zi+l -zi-l 

26i-l/2 ’ 

and 

1 

6i-1/2 [ 

gi+l,/2(zi+l -zi> gi-1/2(zi-zi-l) 

6i - ‘,-1 1 + k z, 
i I 

ci+lxi+l - ci-lxi-l 
= 

2si--1/2 ’ 
(27) 

where 
6i = Si+ 1 - Si, 

and 

g. 
gi + git 1 

rt l/2 = 2 * 

This amounts to a 2 x 2 matrix equation for the pair Xi, if Zit I at each grid point. 
Since they amount to initial value problems in the coordinates they are solved in one 
sweep across the gridded field line. We might note that 6, are not the chord lengths 
but the actual arc lengths between grid points. 

Using the Gear algorithm avoids the use of a gridded field line and in fact it 
generates the trajectory of the field line as it goes, picking points on it at whatever 
interval it requires to satisfy its error criterion (supplied by the user). The user- 
supplied subroutine DIFFUN which gives the integrator Jr/&, &/as, X7/& &Y/& 
c~IV/C%, and tJZ/& at arbitrary r, z locations actually calculates these “source” terms 
analytically from the spline formula for I,V and its derivatives. Thus, given a spline 
representation for w, it can calculate arbitrarily accurate eigenfunctions and eigen- 
values-hence growth rates-limited of course by round-off error. Since the spline 
representation does not perfectly represent a true equilibrium, one need not demand 
more accuracy than is implicit in the equilibrium. However, particularly for elongated 
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flux surfaces and those near the separatrix, it is useful to have an integrator cap 
of representing very spiked eigenfimctions; the Gear spline method can resolve 
spikes while the finite difference integrator will have zero-order errors there. 

It has been pointed out that the 2-D fields calculated by our spline formula 
be mapped onto the 1-D gridded field line and then resplined in 1-D (211. The 
method would then be faster because each spline evaluation in I-D is four times 
faster than a 2-D evaluation; how this would effect the overall economy of the code 
has not been determined. A further advantage of the 1-D spline is that the Y an 
coordinates would not be needed once the 1-D grid was defined so Gear would need 
to integrate only four equations instead of six. No longer would arbitrarily accurate 
eigenfunctions result but the errors might be very small resecting the di~~repa~~~ 
between the 4-D fit to the 2-D spline formula. 

6. RESULTS 

6.1. Code Verlycation with Hill’s Vortex Configuration 

In recent work Newcomb has calculated exact analytic growth rates for elliptical 
I-Ml’s vortex equilibria [22,23]. He has found the growth time t, to be simply the 
Alfvin transit time around a field line for field iines near the vortex point. 
he has determined a W-dependent factor, g(w, a/b), to accurately calculate ~ro~tb 
times on flux surfaces away from the vortex where the growth times are 

12 I I I I I 

0 2 4 6 8 10 12 

z Axis (cm) 

FIG. 3. Flux surface y = 0.2~” for the spherical Hill’s vortex generated by STABGROW. 



302 ANDERSON AND BARNES 

Here we indicate that g also depends on the elongation a/b given by the ratios of the 
axial to radial extent of the separatrix. The Hill’s vortex equilibrium is given 
analytically by 

p = -B,(4a* + b*)v 
a*b* ’ (29) 

Since these equilibria are known by these formulae we need not employ the 
equilibrium code to generate these fields. Rather we have built a small code, 
HILLSV, which evaluates these fields on the grid and produces an output disk file of 
the same form as that generated by CYLEQ. This disk file is read by STABGROW. 

0 
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9- 
-7 
b 8 

x 7- 

h 
Y 6- 
c 
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2 E: 4- 

0 
0 

3- 
._o 
; 2- 
f 
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-r 

Arc length km) Arc length (cm) 

0 _------ 

0 

Arc length (cm) 

\ 
6- ‘1. 

I I I 1, I 
0 0.04 0.08 0.12 0.16 0.20 

0.08 0.12 

Arc length (cm1 

FIG. 4. For a circular flux line near the vortex, the lowest symmetric and antisymmetric 
displacements & are shown by the solid lines in (a) and (b). In (c) and (d) the next highest symmetric 
and antisymmetric displacements are shown. The broken lines give the C& displacements. 
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The most tractable configuration for analysis is the elliptical Hill’s vortex with 
a/b = 4, because it has circular flux lines near the vortex. This means the coe~cie~ts 
in Eq. (I 6) are all constants. Hence, the most unstable eigenvalue-and its associated 
growth rate-is given by Eq. (22) for n = 1. In fact, the even and odd modes are 
degenerate here and physically correspond to rigid displacements of the circular flux 
tube, radially and axially, respectively. The result is y = k/r,. Newcomb’s analysis 
was more general, giving this result for elliptical Flux tubes near the vortex. 

We then chose three flux-line configurations to check the validity of the code: 

1. For the oblate elliptical Hill’s vortex a/b = 4, we chose the w  = 0.999~/, 
surface (a circle), where w, is the flux function at the vortex. 
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FIG. 5. For an elliptical flux line near the vortex the displacements are shown analogous to those of 
Fig. 4. 
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2. For the spherical Hill’s vortex a/b = 1, we again use the w  = 0.999v, flux 
surface (an ellipse of elongation = 2). 

(3) For this same spherical Hill’s vortex, we use the flux surface p = O.~Y/,, 
which is a complicated curve away from the vortex near the separatrix. Figure 3 
displays this flux surface. 

The growth rates for the most unstable mode obtained by STABGROW are 
compared to the exact ones in Table I. 

Eigenfunctions corresponding to the three cases in Table I are shown in Figs. 4, 5, 
and 6, respectively. Each figure displays the eigenfunctions of the two lowest even 
modes and the two lowest odd modes. We have shown the actual displacements &, 
(solid line) and C& (broken line) rather than the normalized functions X and Z. In 
Figs. 4a and b we see the lowest eigenfunctions of the circular flux line near the 

10 

5 

0 1. -____---A- 
l': 

?------ 

0 2 4 6 8 10 

Arc length km) 

I I I I I ( I / 1 
4- -\ 

1' \ 
\ ic) 

\ - 

-8 - I I I I I I I I I1 
0 2 4 6 8 10 

Arc length (cm) 

Arc length (cm) 

II I t I ’ I ’ I- 

(d) 

\ 
\/ 

I I I I I I I I I 
2 4 6 8 10 

Arc length (cm) 

FIG. 6. Displacements for the flux line plotted in Fig. 3. 
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TABLE I 

Growth Rates of Hill’s Vortex Equilibria for the Most Unstable Mode 
Calculated by STABGROW vs Those Obtained Analytically 

Case 
Analytic “/ of 

Newcomb 
Numerical y  of 

STABG~~W 

a/b = f ; ly = 0.999y, 
aJb = 1; v/ = 0.999y, 
aj'b = I; ty= 0.2y, 

4.6437 x lo6 4.6426 x IO6 
2.9367 x lo6 2.9362 x lo6 
9.5617 X IO” 9.5594 x lo6 

vortex take the very simple sinusoidal form we obtained from Eq. (21). The next 
higher ones, shown in Figs. 4c and d, represent a pure interchange and a pure pa~a~~~i 
displacement mode (y = 0). The corresponding plots in Fig. 5 show the d~stor~~o~~ 
introduced when an elliptical flux line is near the vortex. Even for this ellipse of 
elongation = 2.0, the eigenfunctions are very steep near the point of maximum field- 
line curvature. Finally, in Fig. 6 the eigenfunctions of the w  = 0.2~~ flux line are 
displayed. 

6.2. Studies of More Realistic Equilibria-The FRX- 

Configurations have been obtained from the equilibrium code, GYLE 
agree well with measured profiles in the FRX-B (field-reversed theta pinch) 
experiment at Los Alamos [24]. Figure 7 shows some of the flux surfaces obtained in 
this calculation. This equilibrium was used in other stability studies as described in 
the Introduction. 

For three typical flux lines the most unstable modes were calculated in 
STABGROW. Unlike the Hill’s vortex equilibria (where P’ is constant) here P” varies 

FIG. 7. Flux surfaces v  = (0.999,0.9,0.5,0.2,0.1) wv are shown for the FRX-B equ~l~b~~u~ 
generated by CYLEQ. 
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TABLE II 

Growth Rates of CYLEQ Equilibria for the Most Unstable Mode 
Calculated by STABGROW for Three Typical Flux Lines 

Case 

FRX-B; a/b = 3.3; yl= 0.99y/, 
FRX-B; a/b = 3.3; v/ = 0.90yv 
FRX-B; a/b = 3.3; v/ = 0.5Oyl, 

Numerical y  of 
STABGROW 

8.99 x 10’ 
Stable 

3.19 x IO5 

Cl 0.1 0.2 0.3 0.4 0.5 0.6 
Arc length km) 

I I I I I 
6 -------- " I J 
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FIG. 8. Displacements for the v  = 0.99v, flux surface for the FRX-B equilibrium are shown. The 
nomenclature is the same as that in Fig. 4. 
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and is small near the I+Y = 0.90~~ flux surface. The destabilizing term is then small 
enough to allow stability on this flux surface. Table II shows the results. 

For these numerically generated equilibria modeling FRX-B, we find the curvature 
is quite large at the axial end of each flux line. It is not surprising then to see the very 
spiked profiles of the eigenfunctions, shown in Fig. 8, where we plot the results 
obtained for the v = 0.99~” flux surface. 

7. CONCLUSIONS 

We have learned from the theory and our calculations that Hill’s vortex equilibria 
are always unstable on every flux line. The more realistic FRX-B equilibria are found 
to be unstable on some flux lines-particularly near the vortex-but stable on some 
intermediate lines. 

In spite of the pessimistic results generated by this model we can still obtain useful 
information about growth rates. If a plasma is MHD unstable it still may be made 
stable by other effects such as finite Larmor radius modifications. An understanding 
of what sort of pressure profiles lead to configurations of low growth rates and to 
ones with large stable regions may also be obtained from studies made with CU 
and STABGROW. The results obtained here from the F equilibria suggest that 
one may find ideal MHD stability in the center of the region between the s~~arat~i~ 
and the vortex. Near the separatrix and near the vortex kinetic effects are expected to 
stabilize the ideal instabilities we find there. 

It may be possible to extend this stability model to better represent the kinetic 
stabilizing mechanisms without having to abandon the analysis of separate flux lines. 
However, it may be unwise to proceed in that direction; rather effort in the use of 

spectral models, such as those embodied in the GATE code [25,26], might give one 
the desired results in a more timely and physical manner with less uncertain apgrox- 
imations. 
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